
6 THE TIME-DEPENDENT 
SCHRODINGER EQUATION 

6.1 INTRODUCTION 

The stationary-state solutions 4>n(r) obtained for a potential V(r) determine the 
state probability distributions of particles in specific energy states. The orbit as­
sociated with any given energy E,. is not like a classical orbit; it is not a trajectory 
in space. Instead it is a spread-out region of more or less concentrated probability. 
The orbit is static; it is a probability distribution fixed in time. 

Energy can be imparted to or taken from a quantum system only if the system 
can jump from one energy Em to another energy Em i.e., only if it can change its 
orbit. A change from one orbit to another can occur if an external time-dependent 
force F ext acts on the quantum system. 

We can associate this force with a new potential energy in the usual way: 

F,,{r. t) ~ -vv,,(r. t). 

Then the system's total energy function (Hamiltonian) can be altered to account 
for the new foi'ce by adding vcxt: 

H ~ H" + V,,{r. t) (6.1.1) 

Here we are using the subscript a to mean atomic, and by Ha we mean the Ham­
iltonian function given in (5.3.5) which describes an atomic particle bound by the 
potential V(r). The new total Hamiltonian H(p, r, t) incorporates the particle's 
kinetic energy p2 /2m and both the static binding potential V(r) and the time­
dependent external potential Vcxt(r, t). The SchrOdinger equation becomes 

( 
h' ) a'~> 

- Zm V2 + V{r) + v,,(r. t) 'l'{r. t) ~ ih Tt {6.1.2) 

6.2 TIME-DEPENDENT SOLUTIONS 

Since H is now .time-dependent, the time-dependent part of the wave function of 
the system cannot be factored as in (5.3.4). This is discussed in Problem 6.1. 
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Another method of solution was proposed by P. A. M. Dirac around 1926. It 
makes use of the '"completeness" of the orbital functions <P,(r), discussed in 
Section 5.4. Because the set cl>,(r) is complete, any function can be written in 
terms of the cl>, 's, for example 'l' (r, t). Following Dirac, we write the exact (still 
unknown) time-dependent wave function as a sum of cl>,'s: 

'i'(r, t) = :0 a"if>"(r) (6.2.1) 

" 

However, since 'l' changes in time, the specific set of coefficients an that can be 
used to reconstitute 'l' out of cl>,'s must also change in time. That is, the a's are 
also time-dependent. 

Since SchrOdinger's equation (6.1.2) is responsible for the time dependence of 
'Ir, it is also indirectly responsible for the time dependence of the a's. We can 
determine the equations for the a's as follows. First, we apply (6.1.2) to 'l' written 
as in (6.2.1): 

:0 a"[H, + V,.,] if>"(r) = L; ih 
0
0
a" if>"(r) 

" " t 
(6.2.2) 

Next we use the fact that the set <P n ( r) is the solution set for the time-independent 
Schr6dinger equation (5.3.5). This means that Haif?n = Enif?n, so (6.2.2) can be 
rewritten as 

L; a"[E" + V,.,] if>"(r) = L; ih oa" if>"(r) 
n n at (6.2.3) 

Next we take the projection of both sides of (6.2.3) along the function '~>m(r). 
Here we understand projection in the sense explained in Section 5.4 [recall (5.4.7)]: 

< '~>m I'~>"> = r "' '~>!(rl '~>"(r) a'r = a= J spDce 
( 6.2.4) 

Thus we find 

ihbm = Emam +~an ) <P~(r) Vext<Pn(r) d 3r ( 6.2.5) 

where we have used a dot to indicate time derivative and the definition (5.4.8) to 
evaluate the sums 

~ anEn (if?m l4>n) = amEm 
" 
:0 iha" ( if>m \if>") = ihilm ( 6.2.6) 

" 
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The integration in (6.2.5) cannot yet be carried out, because the r dependence of 
Veld: has not been specified. However, the integral can be abbreviated conveniently 
as 

V=(t) = ) il>!(r) V~1 (r, t) if>"(r) d 3r (6.2.7) 

For reasons that are explained in the next black-dot section, V mn is called the matrix 
element of V ext between the states m and n of the atomic system. In terms of this 
matrix element, Eq. (6.2.5) takes a more compact form: 

ihQm = Emam + ~ Vmn(t)an ( 6.2.8) 
" 

This equation, as well as (6.1.2), is frequently called the time-dependent SchrO­
dinger equation. This is reasonable, since knowledge of the a's, obtained by solv­
ing (6.2.8), can be used as in (6.2.1) to reconstitute the full 'l'(r, t). 

The a's themselves are called probability amplitudes. This name follows from 
the normalization property of 'l'. According to the probability interpretation of 
quantum mechanics we must have 

roil 'l'*(r, t) 'i'(r, t) d 3r = 1 J space 
( 6.2.9) 

Therefore (6.2.1) implies 

J (~am '~>m) * (~a" if>") d'r = 1 

= L:a!L:a" (i!>ml'~>"> 
m " 

= ~ S a!anOmn 
m " 

= :0 \am \2 
= 1 

m 
(6.2.10) 

It is natural to identify each term in (6.2.10) as an orbital probability. That is, the 
squared magnitude I am 12 is the probability that the quantum system (for example, 
the atomic electron) is in its mth orbit. The term probability amplitude is then used 
for am itself. 

There is a significant shift in viewpoint between (6.2.9) and (6.2.10) even 
though they express the same normalization. Recall that I 'l'(r, t) 12 d 3r is the 
electron probability assigned to the differential volume element d 3r. There is no 
information about orbitals in this assignment, and indeed, many or all of the or-. 
bitals may make a contribution to the probability within d 3r. On the other hand, 
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I am \2 plays the opposite role. It is the probability that the electron is in the mth 
orbital, without providing any information about the spatial location of the electron 
in that orbit. In laser physics information about orbital occupation by the atomic 
electron is much more useful than information about its spatial location. For this 
reason we will concentrate completely on solutions of the second form of the time­
dependent Schr6dinger equation, given in (6.2.8). 

• Let us write out the equations for the coefficients an in (6.2.8) in order, i.e., 

ihiz1 = E1at + V11 at + Vtz!lz + V13a3 + · · · 

iftilz. = Ezaz + Vztal + V22~ + V23a3 + · · · 

ih0.3 = E 3 a3 + V31 a1 + V3za2 + V33 a 3 + 

We see that they can be written as a single matrix equation: 

where 

and 

!:f.~ 

ih'¥ ~ H'i' 

,0[:] 

E1 + vii V12 v13 
v, 
v, 

E72 + V22 V23 

V32 E 3 + V33 

( 6.2.11) 

(6.2.12) 

(6.2.13) 

(6.2.14) 

This matrix form of the SchrOdinger equation is the origin of the term "matrix element" 
for V nm· In this form fi is called the Hamiltonian matrix and 'I' the state vector. Heisenberg's 
original approach to quantum mechanics (1925) was through such matrices. Physical ob­
servables were represented by Hermitian matrices, whose matrix elements satisfy the rela­
tion v!, = V mn· It was not immediately appreciated that Heisenberg's "matrix mechanics" 
is equivalent to SchrOdinger's "wave mechanics". • · 
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6.3 TWO-STATE QUANTUM SYSTEMS AND SINUSOIDAL 
EXTERNAL FORCES 

According to Bohr's description of quantum jumps, an atom can increase its energy 
by jumping from an orbit with energy E to one with higher energy E' if a photon 
of frequency w is simultaneously absorbed, where hw = E' - E. The reverse 
process is associated with the emission of a photon of frequency w. 

We associate photons of frequency w with an electromagnetic wave of the same 
frequency. According to our analysis in Section 2.2, an external electromagnetic 
field interacts with an electron via the time-dependent potential 

v,,.(r, R, t) ~ -er · E(R, t) 

We showed in Section 2.2 that r is the relative electron-nuclear distance and R is 
the location of the center of atomic mass. We will begin by considering a mono­
chromatic plane wave forE: 

E(R, t) = tE0 cos (k·R- wt) 

=!tEo d(k·R-wt) + c.c. 

--+ ! tE'oe -twr + c. c. (6.3.1) 

where c.c. means complex conjugate and for convenience R has been put at the 
origin.This form of Vcxt is the result of the dipole approximation, which is highly 
accurate when applied to optical transitions in atoms. 

The implication of Bohr's rule for quantum jumps is that only pairs of energy 
levels in the atom that are separated by tiE = hw are affected by radiation present 
at frequency w. Therefore, we will begin our study by restricting our attention to 
just two of the electronic energy levels. These are shown in Figure 6.1 and des­
ignated 1 and 2, with energies E1 and £ 2 , such that 6.E = E 2 - E 1 = hw. 

For such a two-state system the expression (6.2.1) is simply 

'l'(r, t) ~ a1 (t) <1? 1 (r) + a,(t) <1?2 (r) (6.3.2) 

........ -2" 
~w 

Figure 6.1 Energy levels of a hypothetical atom. Radiation of angular frequency w is nearly 
resonant with the E1 --.)- EQ. transition. 
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and the Schrodinger equation (6.2.8) reduces to 

ina,(t) = E1 a 1(t) + Vna1(t) + V12az(t) 

inil,(t) = E2 a2 (t) + V21 a1 (t) + V22 az(t) 

( 6.3.3a) 

( 6.3.3b) 

Level 1 may be the ground level but need not be. In most cases of interest the 
parity selection rule (see Problem 6.5) requires the diagonal matrix elements Vu 
and V22 of the interaction to be zero. Then 

ina,(t) = E1a1(r) + V12az(t) 

iha,(t) = E2 az(t) + V21 a 1 (t) 

( 6.3.4a) 

( 6.3.4b) 

Equations (6.3.4) give the time variation of the probability amplitudes a 1 and 
a2 for the two-state system. If the two-state model is a reasonable approximation 
we can assume that the system has negligible probability of being in any state 
other than 4> 1 or <f>2 • In other words, the probability that the system will be found 
in one or the other of these two states is unity at any time: 

la,(tll' + laz(rll' = 1 ( 6.3.5) 

This is the two-state version of (6.2.10). 
Equations (6.3.4) show how the 1-2 and 2-1 matrix elements of vext are in­

volved in changes in the amplitudes a 1 (t) and az(t). From (6.2.7) and (6.3.1) we 
can express these matrix elements more explicitly as 

Vtz(t) = -er12 · !(EE0e-iwt + c.c.) ( 6.3.6) 

V21 (t) = -er21 • !(EE0 e-"'' + c.c.) ( 6.3.7) 

where, for example, the 1-2 matrix element of r is defined by 

r 12 = ) i!>f(r) r 1>2 (r) d 3r (6.3.8) 

Note that r 12 is generally a complex-valued vector because the ~·s may be com­
plex. The numerical value ofr12 depends on the wave functions <1> 1 and ~2 , so the 
size of the matrix elements V12 and V21 must be expected to vary from atom to 
atom. As a typical magnitude (associated with an optical transition to or from an 
atomic ground state), one can expect \ r 12 \ to differ from the Bohr radius a0 :::::: 

~ A by less than a factor of 10. Listings of the radial and angular parts of the 
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coordinate matrix element r 12 are given in Appendix 6.A for various transitions in 
hydrogen. Notice that the matrix element tends to have a significantly larger mag­
nitude if the n values are different by only one unit. 

With V12 (t) and V21 (t) given by Eqs. (6.3.6) and (6.3.7) we can insert them 
in Eq. (6.3.4). It is convenient to adopt several conventions at the same time. We 
will work with frequencies instead of energies, so we divide through by h and 
define 

E,- E, 
Wzt = h 

( 
Eo 

X21 = e r 21 • t) -
h 

E 
X12 = e(r12 • &) ...2. 

h 

(6.3.9) 

(6.3.10a) 

( 6.3.10b) 

Note that even though r 12 = ri'1 (see Problem 6.2), we cannot write x12 = xi1, 

since t£0 may be complex (for circularly polarized radiation, for example). Evi­
dently x is the field-atom interaction energy in frequency units. It is also known 
as the ''Rabi frequency," as we explain below. Also, we now set the arbitrary 
zero of energy at Et. so E 2 -+ E2 - E1 = hw21 • Then Eqs. (6.3.4) become 

iilt = -~(xl2e-iwt + xiteiwt)Clz 

iilz. = Wztelz- ~(Xzte-lwt + Xfzelwt)at 

( 6.3.11a) 

(6.3.11b) 

In the absence of any radiation field (x = 0) we find a1 (t) = a, (0) from 
(6.3.1la) and az(t) = az(O) exp [ -iw21 t] from (6.3.11b). In the presence of a 
nearly resonant radiation field (6.3.1) oscillating at frequency w === w21 we adopt 
similar trial solutions 

a1 (t) = c1 (t) 

az(t) = Cz(t) e-iw< 

and find these equations for c1 (t) and c2 (t): 

·· I ( -2iw< * ) ZCt = -2 X12 e + X21 Cz 

.. ( ) '( * 2iw) zcz = Wzt - w c2 - 2 Xzt + X 12 e Ct 

( 6.3.12a) 

( 6.3.12b) 

(6.3.13a) 

( 6.3.13b) 

Equations (6.3.13) are more useful because of their isolation of the exp [ ±2iwt] 
tenns. These terms oscillate so rapidly compared with every other time variation 
in the equations that they can be assumed to average to zero over any realistic time 
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interval. In this way it is argued that they can simply be discarded. This is known 
as the rotating-wave approximation (abbreviated RW A in the optical resonance 
literature). It leads to these elementary working equations: 

ii:, -!x*c2 (6.3.14a) 

ii:2 = Ll.cz- !xc1 (6.3.14b) 

where we have dropped the subscript 21 from x21 and have introduced Ll to stand 
for the atom-field frequency offset, or detuning: 

X = X21 = ( er21 • t) ~0 
( 6.3.15a) 

Ll = w2 1 - w (6.3.15b) 

If t£0 is a constant vector x can be taken to be a purely real number. This can 
be arranged by the right choice of phases of the wave functions ~ 1 and 4>2 (see 
Problem 6.3). Unless the context indicates otherwise (see Sec. 8.2), we will as­
sume this has been done. 

The great advantage of Eqs. (6.3.14) is their relative simplicity. The smallness 
of the coefficients t:. and x· (compared with w and w21 ) shows that the c's are 
''slow'' variables (compared with the a's). They contain the essential physics once 
the rapid oscillations associated with the frequencies w and w21 are removed by 
the rotating-wave approximation. The solutions for the c's are easily found (see 
Problem 6.4): 

( 
llt .b..llt) ·; ct(t)= cos-+z-sm- e-1At2 
2 n 2 

(6.3.16a) 

c2 (t) = (i ~sin~) e-iM/
2 (6.3.16b) 

Here we have adopted the phase choice to make x real. Also, we have assumed 
the atom to be in state 1 initially: c1 (0) = 1, c2 (0) = 0, and we have introduced 
the generalized Rabi frequency 

n = (x' + .c.')l/2 ( 6.3.17) 

which reduces to the ordinary Rabi frequency x at exact resonance ( .6. = 0). For 
this reason x is sometimes called the resonance Rabi frequency .. 
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s 
0:: 

h 4. "'-
Figure 6.2 Plot of the upper-state probability ? 2 (t) given by Eq. (6.3.18). Note that larger 
detuning .t. corresponds to higher frequency of Rabi oscillation but lower amplitude. 

The corresponding probabilities P1 (t) = I a1 (t) 12 and P2 (t) = I a,(t) 12 are 

PJ(t) = H 1 + (~)'] + ~ W' cos llt ( 6.3.18a) 

P2 (t) = ~ (~)'[1 -cos llt], ( 6.3.18b) 

The justification for defining 0 and x exactly as we have and calling them 
(instead of 0/2 or 20) "the" Rabi frequencies is evident in Figure 6.2, where 
P2 (t) is plotted. It is clear that ll is precisely the frequency at which probability 
oscillates between levels 1 and 2. It is easy to check that P1 (t) + P2 (t) = 1 for 
all t, so P1 simply oscillates at the same frequency with the opposite phase from 
P, (t). 

6.4 QUANTUM MECHANICS AND THE LORENTZ MODEL 

In Chapters 2 and 3 we discussed Lorentz's classical electron oscillator model for 
the interaction of light with matter. Although this model is completely classical, 
it off~rs, as we saw, good explanations for a wide variety of phenomena. In this 
section we will explain, from the viewpoint of quantum mechanics, why the Lo­
rentz model is so successful and also why the oscillator strength f must be intro­
duced. 

The basic dynamical variable for an atomic electron in the Lorentz model is its 
displacement x. In order to establish the connection between the Lorentz model 
and the quantum-mechanical theory of an atomic electron, let us consider the cor­
responding quantum displacement, i.e., the expectation value ( r ) in our two-state 
atom. By definition (5.2.20) this expectation value is 
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(r) = J 'l'*(r, t) r'l'(r, t) d 3r (6.4.1) 

For the two~state atom, 'It (r, t) is given by the linear superposition (6.3.2) of the 
two stationary states. Thus 

( r) = J (afif>( + atif>l') r(a1 if> 1 + a;,if>2 ) d 3r 

ia1 1
2
r 11 + la2 1

2
r22 + aja2 r 12 + afa1rzt ( 6.4.2) 

This complicated expression can be simplified. We noted in the preceding sec­
tion that for atoms we can take V11 = V22 = 0, which means r 11 = r22 = 0. Thus 
we have 

(r) = r12aiaz + rztai'at 

= r 12aia2 + c.c. ( 6.4.3) 

Since we are looking for a quantum analog to the Lorentzian physics of Chap­
ters 2 and 3, we look for the equation of motion obeyed by the .quantum expectation 
value ( r). For simplicity we consider linear polarization, so that t.E0 is real. From 
equations (6.3.4) we easily compute (retaining the choice of phases that leads to 
real-valued r 21 • tE0 and Vzt) 

h :!_ (a( a;,) = -i(E2 - E1) afa;, - iV21 (I a,l' - Ia;, I') (6.4.4) 
dt 

and 

d' 
h2 -(a*a)= dt2 1 2 -(E2 - E,/a(a;,- (E2 - E,) V21 (Ia, I' -Ia;, I') 

- ih~ [v"(la,l' -la;,l')]. ( 6.4.5) 

Therefore, since we have real r 12 we can write 

(r) = r"(afa;, + a,af) ( 6.4.6) 

and we can combine (6.4.5) with its complex conjugate equation to get 

(a' ') 2ewo (I I' I l'l 2 + "'o (r) = +- r 12 (r21 ·E) a1 - llz 
dt h 

( 6.4.7) 

Here we have adopted the classical notation w0 for the transition frequency w21 • 
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There is a close similarity of (6.4.7) to the Lorentz equation (2.2.18) for the 
classical electron displacement x: 

(
d

2 
) e 

dt2 + w% x =;:;; E (6.4.8) 

To interpret the differences between (6.4.7) and (6.4.8) we first recall the special 
circumstances for which the Lorentz model was invented (around 1900). The phe­
nomena Lorentz sought to explain involved only natural light (from the sun), or 
light from man-made thermal sources (lamps). The spectral intensity (W /cm2

-

Hz) of any such radiation is weak (recall Section 1.2). This suggests that we focus 
our attentio,n on the quantum equation (6.4. 7) in the case in which the excited­
state occupation probability is close to zero. [Sufficient conditions for this are 
worked out later, in Section 7.5.] In our two-state atom this means I a 2 1

2 << 1 
and therefore I a1 1

2 
::::::: 1, which gives 

la,(r)l 2 -laz(tll' ~I ( 6.4.9) 

Under such circumstances of low excitation, we can approximate (6.4.7) by the 
equation 

(
d

2 
') 2ewo dtz + "'o (r) = hr"(r"·E) (6.4.10) 

This equation is still different from the Lorentz-model equation (6.4.8), but only 
in the constants on the right-hand side. Let us look at it more closely in a particular 
example. 

Suppose the electric field points in the z direction (E = 'l.E), so that 

(
d

2 
') 2ew0 

dt' + wo (r) = h r 12z21 E (6.4.11) 

and let the atomic states 1 and 2 be the 100 and 210 (ls and 2p) states of hydrogen. 
Then from Appendix 5.A we have 

if> 1 (r) = R,,o(r) Yo,o(B, <P) 

if>2 (r) = R2 , 1 (r) Y1,0 (8, ¢) 

(6.4.12) 

(6.4.13) 

[This choice of states is discussed below. Spin does not play any role in this cal­
culation. It may be assumed that ms = + ~ (or -~)for both states.] Now we can 
evaluate the three components of r 12 • 

The components of r in Cartesian coordinates are shown in Figure 6.3 to be 
related to those in spherical coordinates by 
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z 

y 

X 

Figure 6.3 Cartesian components of the radius vector r in relation to spherical coordinates. 

x=rsinOcos¢ 

y = rsin8sin¢ 

z=rcosO 

We begin our evaluations with the z component: 

Z21 = ~ ~ ~ <Pj(r) z<l> 1 (r) d 3
r 

(6.4.14a) 

( 6.4.14b) 

(6.4.14c) 

r r'Ri. 1(r) Rt.o(r) dr ~:· J: Yf_ 0 (e, </>)sine cos e Y0, 0 (e, </>)de d</> 

(6.4.15) 

The radial and angular integrations are traditionally considered separately. We 
consider the radial part first, and denote it r21 : 

r21 = (2aQ"312 ) ~ (2ao)-312 roo(__!__) exp ( -r/2ao) r'e-•1'"> dr 
'\13 Jo 2a0 

With a change of variable and integral tables one finds 

r r4 exp ( -3r /2ao) dr = (
2
;

0 
)' r x4e-' dx = 4! (2~ )' 

and therefore 

r21 = l.29a0 (6.4.16) 

Note that we have verified the first line of Table 6.1 in Appendix 6.A. The angular 
part is also easily worked out. We will denote it by Z21 , where the circumflex 
indicates that the magnitude r has been taken out and we are considering the z 
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component of the unit vector i: = X sin 8 cos ¢ + S' sin 8 sin ¢ + :Z cos (J. We 
find the value 

~ ~2• ~-
Z2t = d</> cos2 e sine de 

0 0 

= ~ 2~ L x 2
dx 

=4 (6.4.17) 

The combination of (6.4.16) and (6.4.17) then gives 

Z21 = T21i21 = 0.745a0 (6.4.18) 

Proceeding in exactly the same fashion, we find that x21 and y21 vanish for the 
states (6.4.12) and (6.4.13). It is easy to see why: x andy have</> dependences of 
cos ¢ and sin ¢, respectively. Since the integral from 0 to 21r of either cos ¢ or 
sin¢ is zero, x21 = y21 = 0. Note that we have verified the first line of Table 6.2 
in Appendix 6.A. 

Equation (6.4.11) may therefore be simplified: 

(
d

2 
2 ) 2ew0 

dt' + wo (r) = hZz12ZztE (6.4.19) 

_ 2ewo (z )'E 
- h 12 ( 6.4.20) 

Now we observe that if in the classical fonnula (6.4.8) we make the replacement 

or equivalently 

e 2ewo 2 - ~ --ztz 
m fz 

e2 2e 2wo 2 
-~--z12 
m fz 

=: [2~wo zt2 J 

(6.4.21) 

( 6.4.22) 

then Lorentz's classical equation for x is exactly the same as the quantum-me­
chanical equation for ( r) under the ground-state approximation (6.4.9). 
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Comparing (6.4.22) with (3.7.5), it is evident that they agree if we identify the 
factor in brackets in the former with the oscillator strength factor f: 

2mwo 2 
J= -h Zt2 

Since f values have been known from absorption and dispersion experiments for 
many years, this identification can easily be tested. Using our calculated result 
(6.4.18) and the expression w0 = (£2 - E1 )jh for the Bohr transition frequency, 
we compute from (6.4.22) the (dimensionless) numerical value 

f = 0.416 (6.4.23) 

Comparison with the first entry of Table 3.1 confirms that 0.416 is indeed the 
oscillator strength of the n = 1 -4 n = 2 transition of hydrogen. This shows that 
we have not only demonstrated the validity in quantum theory of the Lorentz model 
under conditions of low excitation (I a2 j2 << 1), but we have also derived an 
expression for the oscillator strength of the transition in terms of fundamental 
atomic parameters. We note that the presence of li indicates the quantum nature 
off. 

Our example gives the impression that the z direction plays a special role. This 
is not actually the case. We can correct the misimpression as follows. First we 
note that the classical atom, according to (6.4.8), is free to respond to the electric 
field, no matter in what direction E points. On the other hand, according to (6.4.10) 
the quantum mechanical atom responds only to the component of the field parallel 
to the matrix element vector r21 • That is, the quantum mechanical atom appears 
to have an internal or intrinsic sense of direction. 

In fact a quantum mechanical atom does have a sense of direction if it is exposed 
to orienting or aligning forces such as from static external electric or magnetic 
fields. External forces have the effect of destroying ("lifting") the degeneracy of 
states mentioned in Section 4.3. When the degeneracy is lifted, each set (n, l, m) 
of state quantum numbers refers to a distinct value of energy. Conversely, in the 
absence of external alignment or orientation (in an atom in free space) each tran­
sition is degenerate since all possible m' s associated with the same l denote states 
with the same energy. Thus, to compare a quantum mechanical atom with a clas­
sical atom in free space requires that the degeneracy of the initial and final states 
be recognized. Figure 6.4 shows the states with differing m values contributing to 
the ls-2p transition chosen in (6.4.12) and (6.4.13) above. Figure 6.5 shows the 
corresponding situation for a p-d transition. 

We see now that the right-hand side of (6.4.10) correctly refers to an atom in 
free space only if the three possible m values (+I, 0, -I) of the 2p state are all 
included. As it happens, for an s -)' p transition, if the field is polarized in the z 
direction as assumed in the calculation, the m = ± 1 contributions to the result 

m=-1 m=O 

m=O 
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m=+1 

i=O 

L= 1 

Figure 6.4 Absorptive transitions between an s 
level ( 1 = 0) and a p level ( 1 = 1 ). The transition 
m = 0 -> 0 occurs in a linearly polarized field, 
whereas them= 0- +1 andm = 0-> -1 tran­
sitions occur in left and right circularly polarized 
fields, respectively. 

turn out to be zero [see Problem 6.6a]. This is why the calculatioll reached the 
correct result, given in (6.4.23). 

On the other hand, if the field had not been chosen in the z direction, then the 
m = ± 1 terms would have contributed enough to the result to produce the same 
final number. This follows from the important quantum mechanical result 

I;m., lxtzl 2 
= I;m., IY12I2 

= I;m., lztl ( 6.4.24) 

where the summations are over all of the m values for levels 1 and 2. The usual 
expression for the oscillator strengthfrecognizes these and other symmetry prin­
ciples [see Problem 6.8]. As a resultfis conventionally written in terms of the 
isotropic combination lx12 12 + IY12 I2 + I z12 l2 = r 12 ·r21 , as follows: 

J= (2mw21 /3h) l::m r1,·r21 ( 6.4.25) 

where the sum is over the m values of the final state of the transition. Note that 
the final state is unambiguously tP2 in our example because of our assumption about 
level probabilities in (6.4.9). 

This quantum-mechanical validation of the classical Lorentz model is little short 
of wonderful. We have shown that, under conditions of low excitation probability, 
an atomic electron responds to an electric field exactly as if it were bound by a 
spring to the nucleus. The classical oscillation frequency w0 corresponds to a Bohr 
transition frequency, just as we surmised in Chapters 2 and 3. And if we want the 

m=-2 -1 0 

m= -1 0 

+1 +2 

.e = 1 
+1 

io2 

Figure 6.5 Transitions 
between p and d levels. 
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classical Lorentz model to agree in quantitative detail with quantum mechanics, 
we simply introduce the oscillator strength as in (3.7.5). 

We have now justified the Lorentz model quantum-mechanically in a special 
case, but have included only two atomic levels in our calculations. It is not difficult 
to justify the Lorentz model using the full time-dependent SchrOdinger equation 
(6.2.8) for the probability amplitudes of all atomic levels, assuming that the atom 
remains with high probability in the ground level. Actually, however, it is usually 
not really essential, under conditions of low excitation probability, to include more 
than the ground and first excited levels of an atom. The reason for this is made 
clear by inspection of Table 3.1 for the oscillator strengths of hydrogen: the tran­
sition involving the n = 1 and n = 2 energy levels has a much larger oscillator 
strength than other transitions involving the ground level. Thus our two-level ap­
proach, including only n = 1 and n = 2 levels, is a reasonable approximation 
under conditions of high ground-state probability. 

6.5 DENSITY MATRIX AND COLLISIONAL RELAXATION 

The identification of quantum and classical electron displacements < r) and x al­
lows the classical Lorentz theory to be put in its correct perspective, as we showed 
in the preceding section. The same identification assists us with ·our development 
of the quantum theory of absorption and emission, because it correctly suggests, 
via Eq. (6.4.3), that the combinations ataz and a1 a1 are more useful than either 
a1 or az alone. 

We will pursue this approach by obtaining the equations of motion for these 
combination variables, except that we will focus on the related but simpler quan­
tities c1 and c2 defined in (6.3.12). First we adopt a conventional notation and use 
the Greek letter p (rho) to define 

Ptz :s Ct cf' ( 6.5.1a) 

P21 :s CzCf (6.5.lb) 

Ptt :s CtCf = ic1 [
2 

(6.5.1c) 

Pn ~ c,cf = lc,l' (6.5.1d) 

The p's are elements of the so-called ""density matrix" of the atom, as we explain 
briefly at the end of this section. However, independent of this temrinology, it is 
clear that p 11 and p22 are just new ways to write the levels' occupation probabili­
ties. The physical meanings of p12 and p21 are related to the electron displacement 
vector througb (6.4.3) and (6.3.12), so we can think of p21 as the complex ampli­
tude of the electron's displacement < r ) . 

By using equations (6.3.14) repeatedly we can easily derive the following equa­
tions for the p's (see Problem 6.9): 
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* Ptz = iD.p,z + i ~ (Pn- Pu) ( 6.5.2a) 

Pzt -iflp21 - i ~ (Pn- Pu) ( 6.5.2b) 

Pu 
i - z (XPt2 - X*P21) (6.5.2c) 

Pn = ~ (XPt2 - x*Pzt) (6.5.2d) 

The solutions of these equations can be constructed from the solutions for c1 (t) 
and c2 (t) given in (6.3.16). 

However, the equations themselves are not yet in their most useful form. This 
is because they do not reflect the existence of relaxation processes such as colli­
sions. The same statistical principles employed to treat collisions in Chapter 3 will 
be used again here. There will be one added complication compared with the clas­
sical case, originating with the population variables p22 and p 11 , which have no 
classical counterparts. 

First we will concentrate on the electron's complex displacement variable Pzt> 
and on one type of collision, namely purely elastic collisions, which do not affect 
the populations p 11 and p22 • If the radiation field present is steady, then x =con­
stant. We require the solution for p21 (t) that vanishes at an earlier time t1, which 
(as in Chapter 3) we associate with the time of the atom's most recent collision. 
We assume that collisions are frequent, so that t - t 1 is short enough to neglect 
changes in p22 - p 11 • The required solution is: 

(<)I = x(Pn- Pu) (l _ e-'•"-"'). 
P21 r1 '">A (6.5.3) 

This can be checked by substitution in (6.5.2b), remembering to hold x and p22 

- p 11 constant. Next we average this solution over all possible earlier times t 1 at 
which a collision might have occurred, using the familiar expression (3.9.4) for 
the probability dfthat the collision occurred in the time between t 1 and t1 + dt1 : 

The result is 

(pz,(t)) 

df(t, t
1

) = e-(<-,,1, dt1 

T 

X(Pn- Pn) f' dtt e-(t-tt)/'r (1 _ e-iA(t-tl)) 

2~7" J_oo 
X(Pn - Pn) 1 

2 fl-i/r 

( 6.5.4) 

( 6.5.5) 
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• It is instructive to compare (6.5.5) in detail with its classical counterpart, which is (3.9.7). 
Since ( x) was written there in complex form, the correspondence is ( x) cl - ( r ) qm = 
2r

12 
( p

21
) e-i(wt-k::l. As we have seen above, we should also take P22 -+ 0 and p 11 __. 1 for 

a classical comparison. Furthermore the equations for c1 and c2 , and thus for p21 , were 
written in the rotating-wave approximation, which assumes the near-resonance condition w0 

<= w, or w5 - w2 :::::: 2w ( w0 - w) = 2wA. With these adjustments, to ensure similarity of 

assumptions, we find 

e 
(x)c1--> Zmw 

tEo e-i(wt-kz) 

L'. - i/r + 1/2wr' 
_ er

12
(r

2
t • t) E

0 
e-I(O>t-kz) 

(r)qm h. A-i/r 

( 6.5.6) 

(6.5.7) 

We can drop the final term in the denominator of (6.5.6) because it has already been dis­
carded in Chapter 3. If we replace w by w21 , as the resonance approximation permits, then 
the only other difference between the classical and quantum expressions is the difference 
between (e /2mw21 ) t and er12 (r21 • t) jh, which we determined in Section 6.4 to be just 
a factor off, the oscillator strength. Thus the quantum and classical theories are again found 
to be in complete accord, given the universal use of the oscillator-strength factor in classical 
formulas-again, if we put all of the atomic population in the ground level, p22 - p11 

-1. • 

The same result (6.5.5), obtained by a collision average, can also be reached 
by a simple modification of the original equation of motion. It can be checked 
(Problem 6.10) that collisions are already included if we rewrite the p21 and p12 

equations as follows: 

i>tz = - (~- ib. )P12 + i x2* (Pv.- Pn) 

Pzt = - (~+ill. )P21 - i ~ (Pv.- PH) 

( 6.5.8a) 

(6.5.8b) 

As in the classical case, we cannot apply these equations any longer to an individ­
ual atom. Instead they represent an "average" atom in the sense of the collision 
average in (6.5.5). We have omitted averaging brackets ( · · ·) for notational 
convenience, as in the classical discussion. 

Note that equations (6.5.8) can be read as if the average atom's P12 and p21 

variables undergo change for two reasons. That is, we can interpret (6.5.8b) as 
the result of adding two independent rates of change: 

P21 = (Pzt)e!astic collisions+ (P2t)Schr&linger cquntion 
(6.5.9) 

where 

1 
- -p2! 

T 
(6.5.10a) ( P21 ) elastic collisions = 
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and 

(Pzt)Schr&lingcrequation = -ib.P2!- i~ (Pv.- Pit) (6.5.10b) 

Such an interpretation will be very helpful in dealing with the effect of collisions 
on the level populations p 22 and p11 , for which there are no classical analogs. 

The collision rate 1/T appearing in (6.5.8) is often referred to as the atomic 
dipole's "dephasing" rate. To understand this we can recall the discussion in 
Section 3.9, following Eq. (3.9.12). It was assumed there that the orientation of 
both x and dx / dt was random for each dipole after a collision, and thus zero on 
average. No assumption was made about (x) 2 or (dxj dt) 2. That is, both classi­
cally and quantum-mechanically we have been discussing only the effects of en­
ergy-nonchanging (elastic) collisions. However, inelastic collisions can also oc­
cur, in which the electron can change its energy level. 

To account for inelastic collisions we simply assert that their effect is to knock 
population out of levels 1 and 2 into other unspecified levels of the atom at the 
fixed rates r 1 and r 2 • At the same time we can include the effect of spontaneous 
photon emission as a special type of "collision" that transfers population between 
the two specified levels, from 2 to 1. Following Einstein's notation we will denote 
the spontaneous emission rate by A21 . Then we write, in analogy to (6.5.9), 

where 

P'22 = ( P22) collisions + ( P22) spontaneous emission 

+ ( Pz2) Schr6dinger equation 

(P22)collisions = -r2P22 

(P22)spontnneous emission = -A21P22 

(P22 )Schr&linscrequntion = ± (XPt2- x*pz,) 

In a similar vein we write the separate contributions to P 11 : 

(,Oll)collisions = -r1Pt1 

(Pu)spontaneous emission = +Az1P22 

( P ll ) Schr&l.inger equation = 
i -z (XP12- X*Pzt) 

( 6.5.11) 

(6.5.12a) 

(6.5.12b) 

(6.5.12c) 

(6.5.13a) 

(6.5.13b) 

(6.5.13c) 

Note that the contribution from spontaneous emission to P11 is positive, and just 
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equal to the negative contribution to ihz, on the assumption that the atom makes 
a jump from level 2 to level 1 while emitting a photon spontaneously. 

As a result of these collisional and spontaneous contributions we obtain the 
following equations for the level populations: 

i 
Pn = -r!PII + AztP22- 2 (XPtz- x*Pzt) (6.5.14a)_ 

P22 =- (r2 + A2,)P22 + ~ (XP12- x*P21) (6.5.14b) 

Again, for notational convenience, we do not include brackets ( · · · ) . However, 
these equations must also be understood as applying only in an average sense to 
the atoms under consideration. 

Finally we must return to the elastic-collision-averaged p 12 and p21 equations. 
'What is the effect of inelastic collisions on them? A simple answer is based on the 
obvious reiation I p

12
l = ( p 11 p22 ) 1/ 2 , which holds before collision averaging. It 

is a direct consequence of the definitions (6.5.1). This relation says that the effect 
of collisions on the magnitude of p12 , as distinct from the effect on its phase, is 
directly related to the effect on the level populations in a specific way. That is, if 
inelastic collisions alone cause p 11 and p22 to decay, i.e., 

Pu(t)lcollisions = Pn(O)e-r
1
t 

P22 (t) I collisions= P22(0) e-r2
t 

( 6.5.15a) 

(6.5.15b) 

which are the solutions to (6.5.12a) and (6.5.13a), then inelastic collisions alone 

cause I pJZCt) I to decay as 

I P12(t)l = [Pu(t) P22(t)]'
12 

1/2 
= [Pu(O) p22 (0) exp [ -(r1 + r 2)tl] 

=I P12(0)I exp (- r,: r
2 

t) ( 6.5.16) 

In words, the effect on p 12 of inelastic collisions alone is to add an extra decay rate 
to the elastic collision decay rate 1/r. This added rate is just crl + rl)/2, one­
half the sum of the population decay rates for p 11 and p72 • 

Thus we write our final equations for p 12 and p21 averaged over both elastic and 
inelastic collisions (and including spontaneous emission) in the form 

P12 = -(~- iLl)Pl2 + i x; CP22- Pu) 

P21 = -(~ + iLl)P2l- i~ (P22- Pu) 

(6.5.17a) 

(6.5.17b) 
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where {3 is the total relaxation rate: 

1 
~ =- + ~ (r, + r, + A21 ) 

T 
( 6.5.18) 

Only the first term in {3 refers to elastic ("soft" or "dephasing") collisions, but 
it is often dominant. It is usually likely that an atom suffers many distant soft 
dephasing collisions for every close collision that is hard enough to cause popu­
lation changes. Thus, to a good approximation in many cases 

1 
fi ~ - >> ~ (r, + r, + A21 ) 

T 
(6.5.19) 

To a surprising degree, laser action of the usual kind depends very strongly on this 
inequality. We will require (6.5.19) in the next chapter. 

The effects of collisional dephasing relaxation can be illustrated in detail by 
integrating the coupled equations for the p's (see Problem 6.11). In Figure 6.6 we 
show the solutions for a wide range of parameters. We have chosen a special case 
that is free of complications. We take r 1 = r 2 = 0 (no transfer of probability to 
levels other than 1 and 2), and we take fl. = 0 (exact resonance). Since r 1 = r 2 

= 0, we have dp 11 / dt + dp22/ dt = 0. Thus, p 11 + p22 = 1 (conservation of 
probability), and it is enough to determine either p 11 or p22 • Actually it is most 
convenient to deal with the inversion p22 - p 11 , since it enters Eqs. (6.5.17) nat­
urally. Furthermore, Eqs. (6.5.17) show that at exact resonance p21 + p 12 is cou­
pled only to itself and plays no role in the dynamics, so we can pay attention solely 
to the difference, p12 - p21 , which in any event is the variable that couples directly 
to p 11 and p22 , as Eqs. (6.5.14) make clear. 

Thus we can focus on two real variables 

v = i(p21 - P12l 

w = P22 - P11 

( 6.5.20a) 

( 6.5.20b) 

which obey the equations (at resonance, and in the absence of the r 1 and r 2 col­
lisions and for real x) 

v =- ~v + xw 

w = -A21 (1 + w) - xv 

( 6.5.2la) 

( 6.5.2lb) 

These equations can be obtained directly from (6.5.14) and (6.5.17) and the def­
initions in (6.5.20). They are discussed further in Chapter 8. Of course, following 
(6.5.18) and the absence ofr1 and r 2, we bave ~ = 1/r + A2,j2. 

The solutions shown in Figure 6.6 are chosen to illustrate the influence of elastic 
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Figure 6.6 Numerical solutions of the v, w equations (6.5.21) for a range of CC!llisional 
damping rates. Note scale changes. 

collisions. As the elastic-collision rate I/ r increases from zero, the damping pa­
rameter (3 also increases and the oscillatory (so-called "coherent") response of the 
atom to the applied radiation changes to nonoscillatory ("incoherent'') decay. Note 
the changes in scale needed in the figure to make evident the different rypes of 
response. 

• The notation rlsed for the p' s suggests that they are the elements of a 2 X 2 matrix: 

!'. ~ [. P11 P12] 

P21 P22 

(6.5.22) 

This is indeed the case, and quantum statistical mechanics is devoted to the study of such 
matrices. They were introduced into quantum theory independently by L. D. Landau and 
J. von Neumann before 1930. For historical reasons /!.. is called the density matrix of the 
system, and in this case e. is the density matrix of a two-level atom. 

The density matrix is a generalization of a related 2 x 2 matrix 
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[
c1cf c,c!] 
czcf c2 ct' 

(6.5.23) 

and the two are occasionally confused. Note that they are not the same matrix, despite the 
original definitions in (6.5.1): p11 = c1 cf, p12 = c1 cf, etc. This is because the p's are now 
understood to refer to collision averages of c1cf, etc. Thus the equations (6.5.14) and 
(6.5 .17) for the elements of the density matrix cannot be obtained from simpler equations 
for c1 and c2 separately. [The reader is challenged to try to construct equations for c1 and 
c2 that can be used to obtain (6.5.14) and (6.5.17).] This is the most important sense in 
which the cc* combinations are more physical than c's and c*'s alone. 

The existence of the matrix (6.5.22) establishes a definite meaning to the terms .. diag­
onal" and "'off-diagonal". Obviously p 11 and p22 are the elements on the diagonal, and p12 
and p21 are the off-diagonal elements. This terminology is frequently applied to the damping 
rates. Referring to Eqs. (6.5.14), we see that r 1 and r2 + A21 can be called diagonal 
damping rates, and from Eqs. (6.5.17) we see that {3 is the off-diagonal damping rate. A 
fundamental relation, obtained from (6.5.18), is illustrated by the inequality 

13;;:: ~ (r, + r, + A21 ) (6.5.24) 

As we have seen, because the off-diagonal elements p12 and p21 have a complex phase as 
well as a magnitude, they are susceptible to purely phase-destructive, as well as population­
changing, relaxation. • 

APPENDIX 6,A MATRIX ELEMENTS OF THE ELECTRON 
COORDINATE r FOR LOW-LYING STATES OF HYDROGEN 

The coordinate vector r can be written r = ri:, where r = I r I is the magnitude of 
r, and r = x sin 0 cos ¢ + y sin 0 sin ¢ + z cos 0 is the radial unit vector (recall 
Fignre 6.3). The matrix element of r between two states <I> 1 and <I>2 is defined by 
(6.3.8): 

r 12 = iii <I>t(r) r<I>2(r) d 3
r (6.A.l) 

We separate the integral into its radial and angnlar parts, according to the corre­
sponding separation of the wave functions of Appendix 5.A. That is, 

r12 = Ttzi"tz (6.A.2) 

where r12 is the matrix element of r, and i-12 is the matrix element of the radial 
unit vector r. In terms of hydrogen wave functions we have 



TABLE 6.1 Radial Coordinate Matrix 
Elements for Atomic Hydrogen 

Transition r 12/ Oo r'f2i ~ 
!s-l.p 1.29 1.66 
ls-3p 0.517 0.267 
ls-4p 0.305 0.093 

2s-3p 3.07 9.4 
2s-4p 1.28 1.64 

2p-3s 0.95 0.9 
2p-3d 4.75 22.5 
2p-4d 1.71 2.92 

TABLE 6.2 Cartesian Components of Angular Matrix Elements 

Angular Matrix 
Element 

(OOirllO) 

(OOirlll) 

(00lrl1 -1) 

< 101 r 120) 

(10irl21) 

(10irl2 -1) 

(10irl22) 
OOirl2 -2) 

01lri20) 

01lrl21) 

01lrl2 -1) 

(lllrl22) 

(11lrl2 -2) 

(1 -1)1rl20) 

(1 -1)irl21) 

o -1)lrlz -1) 

(1 -1)lrl22) 

(1 -1)lrl2 -2) 

x Component 

s-p Transitions 

0 

-"! 
"! 

p-d Transitions 

0 

-../1; 

JTo 
0 
0 

-If, 
0 

0 

-.Jf 
0 

-4o 
0 

0 

0 

.Jf 

y Component 

0 

-i.Jf 

-i.Jf 

0 

-i.f[; 

-i~ 
0 
0 

-i ..![; 
0 

0 

-i.Jf 
0 

-i~ 
0 

0 

0 

-iJf 

z Component 

4 
0 

0 

.Jfi 
0 

0 

0 
0 

0 

.Jf 
0 

0 

0 

0 

0 

.Jf 
0 

0 
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r12 = i R:111 (r) rRn2~z(r) r 2 dr ( 6.A.3) 

r12 ~ iJ Ytm,(e, <P)r~,=(e, ¢)sine de d¢ ( 6.A.4) 

The radial part depends only on principal quantum numbers and orbital angular 
momenta (n, l), and we find the values in Table 6.1. For the vector part ofr12 we 
use the notation 

r 12 ~ (llmllrlf.,m,) ( 6.A.5) 

and we give the Cartesian components of the matrix element separately in Table 
6.2. 

PROBLEMS 

6.1 Show that the factorization (5.3.4) does not work when H is time-depen­
dent. That is, show that the resulting equation for tP(r) depends on t, and 
so tP ( r) itself must depend on t, contrary to the factorization assumption. 

6.2 From the definition ofr12 in (6.3.8), show that (r12 )* = r21 • 

6.3 Every solution tP (r) of the Schr6dinger equation (5.4.1) remains a solution 
when multiplied by a constant K, and it remains normalized according to 
(5 .4.6) if K is a pure phasor: K = eip,. In this sense every tP ( r) has arbitrary 
complex phase that can be adjusted for convenience. Assume that an initial 
phase choice for the wave functions <P 1 and tP2 (perhaps from a table such 
as given in Appendix 5.A) leads to the complex matrix element V12 = a -
i(3 (where"' and (3 are real). 
(a) Replace <P 1 by K <!> 1 • Find the value of K that makes V12 real. 

(b) What is the new purely real value of V12? 

6.4 (a) Find the second-order differential equations satisfied by the probability 
amplitudes c1 and c2 by differentiation and substitution between Eqs. 
(6.3.14). 

(b) Write the general solution for c2 (t) in terms of sin(Ot/2) and 
cos(Ot/2), and fix the coefficients to fit the initial condition c1 (0) = 

O,c2 (0) ~ 1. 
(c) The initial condition specified in (b) is opposite to the one used to obtain 

the solutions (6.3.16) in the text. Comment on the differences (if any) 
between (6.3.16) and the solutions obtained in (b). 

6,5 Use the definition of r 12 in (6.3.8) to show that r 11 ~ 0. To obtain this 
result you must assume that I tP 1 (r) 12 is an even function of r. More pre­
cisely, <1> 1 (r) must have a definite parity, i.e., tP 1 ( -r) is identically the 
same as either <P 1 (r) (even parity) or -<1>1 (r) (odd parity). 




