6 THE TIME-DEPENDENT
SCHRODINGER EQUATION

6.1 INTRODUCTION

The stationary-state solutions &, (r) obtained for a potential ¥ (r) determine the
state probability distributions of particles in specific energy states. The orbit as-
sociated with any given energy E, is not like a classical orbit; it is not a trajectory
in space. Instead it is a spread-out region of more or less concentrated probability.
The orbit is static; it is a probability distribution fixed in time.

Energy can be imparted to or tzken from a quantum system only if the system
can jump from one energy E,, to another energy E,, i.e., only if it can change its
orbit. A change from one orbit to another can occur if an external time-dependent
force F,, acts on the quantum system.

‘We can associate this force with a new potential energy in the usual way:

Foolr, 1) = =VV(r, 1).

Then the system’s total energy function (Hamiltonian) can be altered to account
for the new force by adding V.,

H=H, + V,l(r, 1) {6.1.1)
Here we are using the subscript @ to mean atomic, and by A, we mean the Ham-
iltonian function given in (5.3.5) which describes an atomic particle bound by the
potential ¥ (r). The new total Harniltonian H(p, r, ¢} incorporates the particle’s

Kinetic energy p*/2m and both the static binding potential ¥(r) and the time-
dependent external potential V. (r, ¢). The Schrédinger equation becomes

R, oY
(—EV + V(1) + Voulr, t)) ¥(r, 1) = ih o {6.1.2)

.2 TIME-DEPENDENT SOLUTIONS

“Since H is now time-dependent, the time-dependent part of the wave function of
the system cannot be factored as in (5.3.4). This is discussed in Problem 6.1.
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Another method of solution was proposed by P. A. M. Dirac around 1526. It
makes use of the ‘“‘completeness™ of the orbital functions $,(r), discussed in
Section 5.4. Because the set ®,(r) is complete, any function can be written in
terms of the &,’s, for example ¥ (r, #). Following Dirac, we write the exact (still
unknown) time-dependent wave function as a sum of &,’s:

V(r, ) = 2 a,8,{r) (6.2.1)

However, since ¥ changes in time, the specific set of coefficients 4, that can be
used to reconstitute ¥ out of &,’s must also change in time. That is, the &’s are
also time-dependent.

Since Schradinger’s equation (6.1.2) is responsible for the time dependence of
¥, it is also indirectly responsible for the time dependence of the a’s. We can
determine the equations for the a’s as follows. First, we apply (6.1.2) to ¥ written
as in (6.2.1):

a‘?’ &, (r) (6.2.2)

2 a [Hy + V] ®,(0) = E ih =

Next we use the fact that the set @, (r) is the solution set for the time-independent
Schrddinger equation (5.3.5). This means that H,®, = E,&,, so (6.2.2) can be
rewritten as

2 (B, + Vo) ®,(x) = 2 ik % &,(r) (6.2.3)

Next we take the projection of both sides of (6.2.3) along the function &,,(r).
Here we understand projection in the sense explained in Section 5.4 [recall (5.4.7)]:

@ley = o Bmemer=s, (624

Space

Thus we find
iha, = E.a, + ) a, S &*(r) V. ®,(r) d3r (6.2.5)

where we have used a dot to indicate time derivative and the definition (5.4.8) to
evaluate the sums

2 a,E, {2, | %) = anE,

2 iha, (&, |®,) = ika, (6.2.6)
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The integration in (6.2.5) cannot yet be carried out, because the r dependence of
Vex: has not been specified. However, the integral can be abbreviated conveniently
as :

V,(2) = S BX(r) Voul(r, 1) ®,(x) d3r (6.2.7)

For reasons that are explained in the next black-dot section, V., is called the matrix
element of V, between the states m and n of the atomic system. In terms of this
matrix element, Eq. (6.2.5) takes a more compact form:

ihéy = Epa, + 25 Vea(t) a, (6.2.8)
"

This equation, as well as (6.1.2), is frequently called the time-dependent Schro-
dinger equation. This is reasonable, since knowledge of the a’s, obtained by solv-
ing (6.2.8), can be used as in (6.2.1) to reconstitute the full ¥ (r, ).

The @’s themselves are called probability amplitudes. This name follows from
the normalization property of ¥. According to the probability interpretation of
quantum mechanics we must have

S a ¥, ) ¥(r,0)dr =1 (6.2.9)

ipace

Therefore (6.2.1) implies

S (§ a, ‘Ii,,,)* (2 a, q:,,) dr=1

=2akXa, (®,]d,>

=2 2 a5,

=2 a,]" =1 (6.2.10)

" It is natural to identify each term in (6.2.10) as an orbital probability. That is, the

squared magnitude | &, | is the probability that the quantum system (for exarmple,
the atomic electron) is in its mth orbit. The term probability amplitade is then used
for a,, itself.

There is a significant shift in viewpoint between (6.2.9) and (6.2.10) even

- though they express the same normalization. Recall that [W(r, )|* d°r is the

electron probability assigned to the differential volume element 4 *7. There is no
information about orbitals in this assignment, and indeed, many or all of the or-
bitals may make a contribution to the probability within & *r. On the other hand,
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| a,, | plays the opposite role. It is the probability that ‘the elec:nron is in the mth
orbital, without providing any information about the spatial locaqon of the electro_n
in that orbit. In laser physics information about orbital occupation by the atomic
electron is much more useful than information about its spatial location. For_thss
reason we will concentrate completely on solutions of the second form of the time-~

dependent Schrodinger equation, given in. (6.2.8).
 Let us write ot the equations for the coefficients 4, in (6.2.8) in order, ie.,

IFI&] = E1a1 -+ Vuﬂ1 + V12a2 + V[3a3 4o
ihéy, = Eyay + Vo + Ve + Vopag + -

Ir’l&3 = E3a3 + V3101 -+ ng(lz + V33a3 + ---

- (6.2.11)
We see that they can be written as a single marix equation:
irlr = HY (6.2.12)
where
ay
=" (6.2.13)
= 2
and
Ei+Vu Vi Vis
V;
He | ® Em+ Va Vs (6.2.14)
- €3 Vi Ey + Vn

This matrix form of the Schrédinger equation is the origin of the term ”manix‘element"’
for V.. In this form H is called the Hamiltonian marrix and ¥ the state vector. Helse-nbcrg s
ofiginal approach to quantum mechanics (1923) was through such matrices. ?hysmal ob-
servables were represented by Hermitian matrices, whose matrix ¢lements s:cmsfy the {'ela;t:
tion V¥, = F,,,. It was not immediately appreciated that Heisenberg’s ‘*matrix mechanics
is equivalent to Schrddinger's ‘‘wave mechanics™. *
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6.3 TWO-STATE QUANTUM SYSTEMS AND SINUSOIDAL
EXTERNAL FORCES

According to Bohr’s description of quantum jumps, an atom can increase its energy
by jumping from an orbit with energy £ to one with higher energy E* if a photon
of frequency w is simultancously absorbed, where w = E' — E. The reverse
process is associated with the emission of a photon of frequency .

We associate photons of frequency & with an electromagnetic wave of the same
frequency. According to our analysis in Section 2.2, an external electromagnetic
field interacts with an electron via the time-dependent potential

Veu(r, R, t) = —er - E(R, 1)
We showed in Section 2.2 that r is the relative electron-nuclear distance and R is

the location of the center of atomic mass. We will begin by considering a mono-
chromatic plane wave for E:

E(R, 1)

8E, cos {(k*R — wr)
- %EEO ef(k.RHwt) + c.c.

L2E e + c.c. {6.3.1)

where c.c. means complex conjugate and for convenience R has been put at the
" origin. This form of ¥.,, is the result of the dipole approximation, which is highly
accurate when applied to optical transitions in atoms.
The implication of Bohr's rule for quantum jumps is that only pairs of energy
levels in the atom that are separated by AE = Jw are affected by radiation present
at frequency w, Therefore, we will begin our study by restricting our attention to
just two of the electronic energy levels. These are shown in Figure 6.1 and des-
ignated 1 and 2, with energies E, and E,, such that AE = E, — E| = huw.
' For such a two-state system the expression (6.2.1) is simply

W(r, 1) = @ (1) &:(r) + a(¥) By(r) (6.3.2)

T—
2

1 I oAt

Figure 6.1 Energy levels of a hypothetical atom. Radiation of angular frequency w is nearly
tesonant with the E, - E, transition.
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and the Schridinger equation (6.2.8) reduces to

iha (1) = Eja,(t) + Ve () + Vipa(r) {6.3.3a)
ihin (1) = Eaa2(1) + Vayray(2) + V(1) (6.3.3b}

Level 1 may be the ground level but need not be. In most cases of interest the
parity selection rule (see Problem 6.5) requires the diagonal matrix elements ¥y,
and V,, of the interaction to be zero. Then

iha (1) = Eyq (2) + Viaao (1) (6.3.4a)
ihay (1) = Eaap(t) + Varay(2) (6.3.4b)

Equations (6.3.4) give the time variation of the probability amplitudes a, and
a, for the two-state system. If the two-state model is a reasonable approximation
we can assume that the system has negligible probability of being in amy state
other than %, or ®,. In other words, the probability that the system will be found
in one or the other of these two states is unity at any time:

|| + |a()| =1 (6.3.5)

This is the two-state version of (6.2.10).

Equations (6.3.4) show how the 1-2 and 2-1 mattix elements of V,,, are in-
volved in changes in the amplitudes a(¢) and a,(¢). From (6.2,7) and (6.3.1) we
can express these matrix elements more explicitly as ‘

V]z(t) = —eér|y * %(QEoe_'.“" + C.C.) (6.3.6)

Vz](f) = —é€ry E(Q\E{)e_kﬂ B3 C.C.) (6.3.7)

where, for example, the 1-2 matrix element of r is defined by

r, = S EF(r)yr &, (r) d3r (6.3.8)

Note that r|, is generally a complex-valued vector because the $’s may be com-
plex. The numerical value of r}; depends on the wave functions ®, and &, so the
size of the matrix elements V), and ¥;; must be expected to vary from atom to
atom. As a typical magnitude (associated with an optical transition to or from an
atomic ground state), one can expect {ry,| to differ from the Bohr radivs q, =
3 A by less than a factor of 10. Listings of the radial and angular parts of the
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¢oordinate matrix element ry, are given in Appendix 6.4 for various transitions in
hydrogen. Notice that the matrix ¢lement tends to have a significantly larger mag-
nitude if the n values are different by only one unit.

With Vi5(7) and V5, (¢) given by Egs. (6.3.6) and (6.3.7) we can insert them
in Eq. (6.3.4). 1t is convenient to adopt several conventions at the same time. We
will work with frequencies instead of energies, so we divide through by £ and

~ define
Wy = E%_;l_fﬁ {6.3.9)
X21 = e(ry - ﬁ)% (6.3.102)
! X2 = e(rpy - 2)% (6.3.10b)

~ Note that even though r;, = r}] (see Problem 6.2), we cannot write x32 = x5,

since &y may be complex (for circularly polarized radiation, for example). Evi-

. dently x is the field-atom interaction energy in frequency unmits. It is also known

as the ‘‘Rabi frequency,” as we explain below. Also, we now set the arbitrary
zero of energy at Ey, 80 E; ~» £, — E| = hw,,. Then Eqgs. (6.3.4) become

fiay = ““%(X:ze_m + X;e"w:)@z (6.3.11a)
iy = wg 8y — _%(Xzﬂ?_k'Jr + X;kze‘m)al (6-3-11'3)
In the absence of any radiation field (x = 0) we find a; (1) = a;(0) from
(6.3.11a) and a,(r) = a,(0) exp [ —iw, ¢] from (6.3.11b). In the presence of a
nearly resonant radiation field (6.3.1) oscillating at frequency @ = w,; we adopt
similar trial solutions

a, (1) = ¢, (z) (6.3.122)
ay(1) = (1) e™" (6.3.12b)

and find these equations for ¢y (¢) and ¢, (£):
ié] = _%(XIZ e_m“"' + X;‘I)CZ (6.3.133.)
ity = (wy — @) €z — {3 + x2e®™) e (6.3.13b)
Equations (6.3.13) are more useful because of their isolation of the exp [ £2iwr]

terms. These terms oscillate so rapidly compared with every other time variation
in the equations that they can be assumed to average to zero over any realistic time
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interval. In this way it is argued that they can simply be discarded. This is known
as the rotating-wave approximation (abbreviated RWA in the optical resonance
literature). It leads to these elementary working equations:

&) = —ix*c, (6.3.14a)
ié‘z = ACz — %XC‘ (6.3.14]3)

where we have dropped the subscript 21 from x,; and have introduced A to stand
for the atom-field frequency offset, or detuning:

‘ E
X = Xa = (ery - £) ;D {6.3.133)
A=uy —w {6.3.15b)

If £E; is a constant vector y can be taken to be a putely real number. This can
be arranged by the right choice of phases of the wave functions &, and &, (see
Problem 6.3). Unless the context indicates otherwise (see Sec. 8.2), we will as-
sume this has been done.

The great advantage of Eqs. (6.3.14) is their relative simplicity. The smallness
of the cc_)eﬁicients A and x-(compared with w and w,,) shows that the ¢’s are
“slow”” variables (compared with the a’s). They contain the essential physics once
the rapid oscillations associated with the frequencies w and w,; are removed by
the rotating-wave approximation. The solutions for the ¢’s are easily found (see
Problem 6.4):

& A ; ‘
e fr) = o2 n M a2
10 (cos 5 Tigsin 2) e {6.3.16a)
o .
ea(2) = (i-gsin 5) gmini/2 (6.3.16b)

Here we have adopted the phase choice to make y real. Also, we have assumed
the atom to be in state 1 initially: ¢, (0) = 1, ¢;(0) = 0, and we have introduced
the generalized Rabi frequency

0 = (x* + a2 (6.3.17)

which reduces to the ordinary Rabi frequency x at exact resonance (A = 0). For
this reason x is sometimes called the resonance Rabi frequency.
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Figure 6.2 Plot of the upper-state probability P,(#) given by Eq, (6.3.18). Note that larger
detuning A corresponds to higher frequency of Rabi oscillation but lower amplitude.

The corresponding probabilities Py (¢) = |a, (1) |> and P,(#) = |a,(1)]* are

P.(r) - % [1 + (%)2] + % (3)2 cos O (6.3.182)

Pa{r) = % (%)2[1 — cos O], (6.3.18b)

The justification for defining @ and x exactly as we have and calling them
(instead of Q/2 or 28) “‘the’’ Rabi frequencies is evident in Figure 6.2, where
P, () is plotted. It is clear that £ is precisely the frequency at which probability
oscillates between levels 1 and 2. It is easy to check that Py {z) + P.(¢) = 1 for
all ¢, so P; simply oscillates at the same frequency with the opposite phase from
Py (1).

6.4 QUANTUM MECHANICS AND THE LORENTZ MODEL

In Chapters 2 and 3 we discussed Lorentz’s classical electron oscillator model for
the interzction of light with matter. Although this model is completely classical,
it offers, as we saw, good explanations for a wide variety of phencmena. In this
section we will explain, from the viewpoint of quantum mechanics, why the Lo-
rentz model is so successful and also why the oscillator strength f must be intro-
duced.

The basic dynamical variable for an atomic electron in the Lorentz model is its
displacement x. In order to establish the connection between the Lorentz model
and the quantum-mechanical theory of an atomic electron, let us consider the cor-
responding quantum displacement, i.e., the expectation value { r) in our two-state
atom. By definition (5.2.20) this expectation value is
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(ry = S I*(r, ) r¥(x, ) dr (6.4.1)

For the two-state atom, ¥ (r, ) is given by the linear superposition (6.3.2) of the
two stationary states. Thus

(e} = S (af @t + af&f) r{a;® + a,®,) dr

It

Iallzr” + |ﬂ212f22 + atar;, + afary, (6.4.2)

This complicated expression can be simplified. We noted in the preceding sec-
tion that for atoms we can take V; = V,, = 0, which means r|; = ry, = 0. Thus
we have

{r}

% *
Fpaydy + na; 4

rpafa, + c.c. (6.4.3)

Since we are looking for a quantum analog to the Lorentzian physics of Chap-
ters 2 and 3, we look for the equation of motion obeyed by the quantum expectation
value (). For simplicity we consider linear polarization, so that £, is real. From
equations (6.3.4) we easily compute (retaining the choice of phases that leads to
real-valued ry, - £F; and ¥5,)

B % (@) = ~i(F, - B) ata — wu(laf - () (544)
and
hzg;i (ata:) = —(E, - El)za;kae —(E; — E) Wy (Ializ - |‘72‘2)
- m%[vﬂﬂa,f ~ &[] (6.4.5)
Therefore, since we have real r,, we can write
(r} =rplafe + aaf) (6.4.6)
and we can combine (6.4.5) with its complex conjugate equation to get
(j—; + w%) (r) = "‘% 1'12(1'21']:-")Ual|2 - lazlz) (6.4.7)

Here we have adopted the classical notation w, for the transition frequency w,;.
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There is a close similarity of (6.4.7) to the Lorentz equation (2.2.18) for the
classical electron displacement x:

d? 2 e
(F + Cﬂo) x=_ B (6.4.8)

To interpret the differences between (6.4.7) and (6.4.8) we first recall the special
circumstances for which the Lorentz model was invented (around 1900). The phe-
nomena Lorentz sought to explain involved only natural light {from the sun), or
light from man-made thermal sources (lamps). The spectral intensity (W / cm?-
Hz) of any such radiation is weak (recall Section 1.2). This suggests that we focus
our attention on the quantum equation (6.4.7) in the case in which the excited-
state occupation probability is close to zero. [Sufficient conditions for this are
worked out later, in Section 7.5.] In our two-state atom this means |a, [* << 1
and therefore |a, |* = 1, which gives

lal(’)iz - Iaz(f)r =1 (6.4.9)

Under such circumstances of low excitation, we can approximate (6.4.7) by the
equation

d? 2ew
(P + w%) {r) = ”"h_orlz(rzl'E) (6.4.10)

This equation is still different from the Lorentz-model equation (6.4.8), but only
in the constants on the right-hand side. Let us look at it more closely in a particular
example.

Suppose the electric field points in the z direction (E = 2E), so that

d? Ze
<Ei? + w%) {r) = %rlzz?.IE (6.4.11)

and let the atomic states 1 and 2 be the 100 and 210 ( 15 and 2p) states of hydrogen.

Then from Appendix 5.A we have

@, {r) = Ry o(r) Yo_,o(ea é) (6.4.12)
&,(r) = Ry (r) ¥1,0(0. &) (6.4.13)

[This choice of states is discussed below. Spin does not play any role in this cal-
culation. It may be assumed that m, = +14 (or —34) for both states.] Now we can
‘evaluate the three components of 1.

" The components of r in Cartesian coordinates are shown in Figure 6.3 to be
related to those in spherical coordinates by
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component of the unit vector £ = X sinf cos ¢ + ¥ sinfsing + 2cos 0. We
find the value :

1 2 T
e s 1 3 .
/{‘___.,,_:::::hix%”‘*""e""s"’ ’ &= \Irax So @ So c0s" § sin 0 49
% y=rsindsing - V3 1
Figare 6.3 Cartesian components of the radius vector r in relation to spherical coordinates, = i 2% S x%dx
T -1
= 6.4.17

X = rsin 6 cos ¢ (6.4.14a) E ( )

y = rsin @ sin ¢ (6.4.14b) "The combination of (6.4.16) and (6.4.17) then gives

z=rcosf {6.4.14¢)

1 & r21£11 = 0,745{10 (6.4.18)
‘We begin our evaluations with the z component: L i .

Proceeding in exactly the same fashion, we find that x;; and y,; vanish for the
states (6.4.12) and (6.4.13). It is easy to see why: x and y have ¢ dependences of
cos ¢ and sin ¢, respectively. Since the integral from 0 to 27 of either cos ¢ or
sin ¢ is zero, x;; = ¥;; = 0. Note that we have verified the first line of Table 6.2
in Appendix 6.A.

Equation (6.4.11) may therefore be simplified:

il

3]

S S S $X(r) z&,(r) d
[ R () Reor) o |

0

2

So YT o(0, ¢) sin 8 cos 0 ¥y o(8, ¢) 4 do

(6.4.15)

d? 2ew,
(E + w%) {r) = To Ezyp2 B (6.4.19)
The radial and angular integrations are traditionally considered separately. We
consider the radial part first, and denote it ry,: 2
P & = % (21)'E (6.4.20)

- 2 anp (T r -
ry = (2a5%*) = (24 S (—) exp (—r/2ay) rie™"/% dr
2 = (2a5°7) V3 (2a0) 0 \2ap p (=7/2a) Now we observe that if in the classical formula (6.4.8) we make the replacement

2% 2 (6.4.21)

With a change of variable and integral tables one finds e 2
m h

o o 5
2a,\° _ 2ag
SO r* exp (—3r/2a,) dr = <_3D> SU xe™* dx = 41 <T) or equivalently
2 2e%w
- P 02%2

)
e” | Zmuw
== { - 0 2%2] (6.4.22)

and therefore

ry = 129 (6.4.16)

Note that we have verified the first line of Table 6.1 in Appendix 6.A. The anguolar
part is also easily worked out. We will denote it by %, where the circumflex

part ‘ e L then Lorentz’s classical equation for x is exactly the same as the quanturn-me-
indicates that the magnitude  has been taken out and we are considering the z

chanical equation for {r) urder the ground-state approximation (6.4.9).
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Comparing (6.4.22) with (3.7.5), it is evident that they agree if we identify the
factor in brackets in the former with the oscillator strength factor f:

2mwy o

f 7 i12

Since f values have been known from absorption and dispersion experiments for
many years, this identification can easily be tested. Using our calculated result
(6.4.18) and the expression wg = (E, — E;)/# for the Bohr transition frequency,
we compute from (6.4.22) the (dimensionless) numerical value

f= 0416 (6.4.23)

Comparison with the first entry of Table 3.1 confirms that 0.416 is indeed the
oscillator strength of the n = 1 = n = 2 transition of hydrogen. This shows that
we have not only demonstrated the validity in quantum theory of the Lorentz model
under conditions of low excitation (|a,|* << 1), but we have also derived an
expression for the oscillator strength of the transition in terms of fundamental
atomic parameters. We note that the presence of A indicates the quantum pature
of f.

Our example gives the impression that the z direction plays a special role. This
is not actually the case. We can cormect the misimpression as follows. First we
note that the classical atom, according to (6.4.8), is free to respond to the electric
field, no matter in what direction E points. On the other hand, according to (6.4.10)
the quantum mechanical atom responds only to the component of the field parallel
to the matrix element vector r;,. That is, the quantum mechanical atom appears
to have an internal or intrinsic sense of direction.

In fact a quantum mechanical atom does have a sense of direction if it is exposed
to orienting or aligning forces such as from static external electric or magnetic
fields. Extemal forces have the effect of destroying (*‘lifting’") the degeneracy of
states mentioned in Section 4.3. When the degeneracy is lifted, each set (n, [, m)
of state quantum numbers refers to a distinct value of energy. Conversely, in the
absence of external alignment or orientation (in an atom in free space) each tran-
sition is degenerate since all possible m’s associated with the same [ denote states
with the same energy. Thus, to compare a quantum mechanical atom with a clas-
sical atom in free space requires that the degeneracy of the initial and final states
be recognized. Figure 6.4 shows the states with differing m values contributing to
the 1s-2p transition chosen in (6.4.12) and (6.4.13) above. Figure 6.5 shows the
corresponding situation for a p—d transition.

We see now that the right-hand side of (6.4.10) correctly refers to an atom in
free space only if the three possible m values (+1, 0, —1) of the 2p state are all
included. As it happens, for an 5§ — p transition, if the field is polarized in the z
direction as assumed in the calculation, the m = X1 contributions to the result
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m=-1 m=0 m= 1

Figure 6.4 Absorptive transitions between an s

level (I = 0) and a p level (I = 1). The transition

m = ¢ — @ occurs in a linearly polarized field,

whereasthem =0 — +landm = 0 — —1 tran-
£=0 sitions occur in left and right circularly polarized
m=0 fields, respectively.

turn out to be zero [see Problem 6.6a}. This is why the calculation reached the
correct result, given in (6.4.23).

On the other hand, if the field had not been chosen in the z direction, then the
m = =1 terms would have contributed enough to the result to produce the same
final number. This follows from the important quantum mechanical result

Em’s lxlﬂz = Zhs !YI:Z {2 = Zm‘s !Z1zi2 (6.4.24)

where the summations are over all of the m values for levels 1 and 2. The usual
expression for the oscillator strength f recognizes these and other symmetry prin-
ciples [see Problem 6.8]. As a result fis conventionally written in terms of the
isotropic combination | x> + |¥12[* + 212> = T2 T2y, as follows:

F = (2mesn, /38) 20, Tip Ty (6.4.25)

where the sum is over the m values of the final state of the transition. Note that
the final state is unambiguously &, in our example because of our assumption about
level probabilities in (6.4.9).

This quantum-mechanical validation of the classical Lorentz model is little short
of wonderful. We have shown that, under conditions of low excitation probability,
an atomic electron responds to an electric field exactly as if it were bound by a
spring to the nucleus. The classical oscillation frequency wg corresponds to a Bohr
transition frequency, just as we surmised in Chapters 2 and 3. And if we want the

m=—2 -1 0 +1 +2

=1 Figure 6.5 Transitions
between p and d levels.
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classical Lorentz model to agree in quantitative detail with quantum mechanics,
we simply introduce the oscillator strength as in (3.7.5).

We have now justified the Lorentz model quantum-mechanically in a special
case, but have included only two atomic levels in our caleulations. It is not difficult
to justify the Lorentz model using the full time-dependent Schrédinger equation
(6.2.8) for the probability amplitudes of all atomic levels, assuming that the atom
remains with high probability in the ground level. Actually, however, it is usually
not really essential, under conditions of low excitation probability, to include more
than the ground and first excited levels of an atom. The reason for this is made
clear by inspection of Table 3.1 for the oscillator strengths of hydrogen: the tran-
sition involving the n = 1 and # = 2 energy levels has a much larger oscillator
strength than other transitions involving the ground level. Thus our two-level ap-
proach, including only n == 1 and r = 2 levels, is a reasonable approximation
under conditions of high ground-state probability.

6.5 DENSITY MATRIX AND COLLISIONAL RELAXATION

The identification of quantum and classical electron displacements {r ) and x al-
lows the classical Loreatz theory to be put in its correct perspective, as we showed
in the preceding section. The same identification assists us with our development
of the quantum theory of absorption and emission, because it correctly suggests,
via Eq. (6.4.3), that the combinations afa, and a,a¥ are more useful than either
a; or a, alone.

We will pursue this approach by obtaining the equations of metion for these
combination variables, except that we will focus on the related but simpler quan-
tities ¢, and ¢, defined in (6.3.12). First we adopt a conventional notation and use
the Greek letter o (tho) to define

P = ¥ (6.5.1a)
P = ek (6.5.1b)
o = ot = o {2 (6.5.1c)
Pz = Cycf = |c2|2 (6.5.1d)

The p’s are elements of the so-called ‘‘density matrix™’ of the atom, as we explain
briefly at the end of this section. However, independent of this temninology, it is
clear that o, and p,, are just new ways to write the levels” occupation probabili-
ties. The physical meanings of p,, and p,, are related to the electron displacement
vector through (6.4.3) and (6.3.12), so we can think of p,, as the complex ampli-
tude of the electron’s displacement {r}.

By using equations (6.3.14) repeatedly we can easily derive the following equa-
tions for the p’s (sce Problem 6.9):
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. , . x*

P = idpn +i5-(pn — pu) (6.5.2a)
.. X

pay = —idpy —1 ) (P22 — P11) (6.5.2b)
. i

m=—z (xP12 — x¥p21) (6.5.2¢)
, i ’

b =5 {xp1z — x*p21) (6.5.2d)

The solutions of these equations can be constructed from the solutions for ¢, (#)
and ¢, (¢) given in (6.3.16).

However, the equations themselves are not yet in their most useful form. This
is because they do not reflect the existence of relaxation processes such as colli-
sions. The same statistical principles employed to treat collisions in Chapter 3 will
be used again here, There will be one added complication compared with the clas-
sical case, originating with the population variables ps, and p;;, which have no
classical counterparts.

First we will concentrate on the electron’s complex displacement variable p,,,
and on one type of collision, namely purely elastic collisions, which do not affect
the populations g, and p,,. If the radiation field present is steady, then x = con-
stant, We require the solution for p,,(#) that vanishes at an earlier time ¢;, which
(as in Chapter 3) we associate with the time of the atom’s most recent collision.
We assume that collisions are frequent, so that ¢+ — r; is short enough to neglect
changes in pyy — p1p- The required solution is:

__X(Pzz _ Pn) (1

oA — gmialm), (6.5.3)

le(t)l,l =

This can be checked by substitution in (6.5.2b), remembering to hold x and p,,
— py; constant. Next we average this solution over all possible earlier times #; at
which a collision might have occurred, using the familiar expression (3.9.4) for
the probability df that the collision occurred in the time between 1, and 7, + diy:

di(t, ) = e~¢-w/ @, (6.5.4)
T

The result is

t
{pn()) = __Z_(_%;Ll) S_m dt, e~ CmI/T (] — gmine-w)

— _X(Pzzz— Pn)A—li/T (6.5.5)
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e Tt is instructive to corapare (6.5.5) int detail with its classical counterpart, which is (3.9.7).
Since ¢ x} was written there in complex form, the comespondence is (X} g — {Trlgn =
2l par b € TR A5 we have seen above, we should also take py; — O and oy, = 1 for
a classical comparison. Furthermore the equations for ¢; and ¢z, and thus for p,;, were
written in the rotating-wave approximation, which assumes the near-resoniance condition w,
= w, O tf — o = 2wlwy — @) = 2wA, With these adjustments, to ensure similarity of
assumptions, we find

e 2B, gl 6.5
—_——— . _6
e e A= ifr + 1/2a7 (6.5.6)
. it —kz)
(r) g erp(ru - &) Eye (6.5.7)

k A—ifrT

We can drop the final term in the denominator of (6.5.6) because it has Mdy bfaen dis~
carded in Chapter 3. If we replace w by w31, as the resonance approximat:fm pcxm_xts, then
the only other difference between the classical and quantum expressions is the dlfferepce
between (e /2mewy; ) § and eryy (v - &)/, which we determined in Seguon 6.4 to be just
a factor of f, the oscillator strength. Thus the quantum and classical theories are again f01‘1nd
to be in complete accord, given the universal use of the oscillator-strength factor in classical
formulas—again, i we put all of the atomic population in the ground level, p; — oy =

8 A

The same result (6.5.5), obtained by a collision average, can also be reached
by a simple modification of the original equation of motion. It can be checked
(Problem 6.10) that collisions are already included if we rewrite the p; and oy
equations as follows:

X2 (o — o) (6.5.50)

2
1 . '
P2 = — (; + iA)Pzz - i%(ﬂzz - piy) (6.5.8b)

As in the classical case, we cannot apply these equations any longer to ap individ-
ual atom. Instead they represent an “‘average’ atom in the sense of the collision
average in (6.5.5). We have omitted averaging brackets (- - for notational
convenience, as in the ¢lassical discussion.

Note that equations (6.5.8) can be read as if the average atom’s pyp and ps,
variables undergo change for two reasons. That is, we can interpret (6.5.8b) as
the result of adding two independent rates of change:

(6.5.9)

P = (Pz] ) clastic eollisions + (pzl)Schrﬁd.inger equation

where

1
('bzi)clnstic collisions - P21 {6.5.10a)
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and

. . . X
('021)Schr\3dingcr equation = _lAPZX - EE (9‘22 - pll) (6510b)

Such an interpretation will be very helpful in dealing with the effect of collisions
on the level populations p,; and p,;, for which there are no classical analogs.

The collision rate 1 /7 appearing in (6.5.8) is often referred to as the atomic
dipole’s “‘dephasing’’ rate. To understand this we can recall the discussion in
Section 3.9, following Eq. (3.9.12). It was assumed there that the orientation of
both X and dx /dr was random for each dipole after a collision, and thus zero on
average. No assumption was made about (x)? or (dx /ds)?. That is, both classi-
cally and quantum-mechanically we have been discussing only the effects of en-
ergy-nonchanging (elastic) collisions. However, inglastic collisions can also oc-
cur, in which the ¢lectron can change its energy level.

To account for inelastic collisions we simply assert that their effect is to knock
population out of levels 1 and 2 into other unspecified levels of the atom at the
fixed rates I'; and I'y. At the same time we can include the effect of spontaneous
photon emission as a special type of *“collision™ that transfers population between
the two specified levels, from 2 to 1. Following Einstein’s notation we will denote
the spontaneous emission rate by A,;. Then we write, in analogy to (6.5.9),

'622 = ( '622)collisions + ( '622) spontaneous emission

+ (b2) Schridinger equation (6.5.11)
where
{(622) s = ~ T2z (6.5.12a)
(22) pontaneous emission = —421P22 (6.5.12b)
('bzz)SChrﬁdinger equation % (x012 = x*021) {6.5.12¢)

In a similar vein we write the separate contributions to g;:

("O”)coﬂisions = _F]p“ (6.5.13&)

(b“)spontzmcous emission +dnpx (6-5-13b)
. i

(pu)Schrﬁdingcr equation = _5 (XPlz - X*le) (65130)

Note that the contribution from spontaneous emission to 5, is positive, and just
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equal to the negative contribution 0 42z, On the assumption that the atom makes

a jump from level 2 to level 1 while emitting a photon spontanecusly. .
As a tesult of these collisional and spontaneous contributions we obtain the
following equations for the level populations:

i
g = —Typy + Apipm — 5 (x012 — X*021) (6.5.14a).-
i
pr = = (T2 + Ay) o + 3 (xo12 — x*p21) (6.5.14b}
Again, for notational convenience, we do not include brackets ¢ - - * » . However,

these equations must also be understood as applying only in an average sense to
the atoms under consideration.

Finally we must return to the elastic-collision-averaged p;, and py; equations.
What is the effect of inelastic collisions on them? A simple answer is based on the
obvious relation | p1z] = (£11022) 1/2 which holds before collision averaging. It
is a direct consequence of the definitions (6.5.1). This relation says that the effect
of collisions on the magnitude of py2, as distinct from the effect on its phase, is
directly related to the effect on the level populations in a specific way. That is, if
inelastic collisions alone cause oy, and py, to decay, i.e.,

p1(0) ™™

022(0) e

P11 (f) | collisions = (6-5< 153.)

P22 ()] carisions (6.5.15b)

which are the solutions to (6.5.12a) and (6.5.13a), then inelastic collisions alone
cause | p12(2)] to decay as

‘Plz(f” [enf(z) 922(3)]1/2
[£11(0) £22(0) exp [T + o)1)

T T
lmz(o)l exp (_ %g

In words, the effect on o, of inelastic collisions alone is to add an extra decay rate
to the elastic collision decay rate 1 /7, This added rate is just (I', +T3)/2, one-
half the sum of the population decay rates for ;) and pa.

Thus we write our final equations for o, and p,, averaged over both elastic and
inelastic collisions {and including spontancous emission) in the form

il

1/2
]

i

il

(6.5.16)

*
po=—(B —iA)p + ix? (P2 — o11) (6.5.17a}

. . , X
por = —(B +id)pa — ty (P22 — 1) (6.5.17b)

6.5 DENSITY MATRIX AND COLLISIONAL RELAXATION 205

where § is the total relaxation rate:

B = % + (T + T2+ 4y) (6.5.18)

Only the first term in S refers to elastic (“‘soft’” or *‘dephasing’} collisions, but
it is often dominant. It is usually likely that an atom suffers many distant soft
dephasing collisions for every close collision that is hard enough to cause popu-
lation changes. Thus, to a good approximation in many cases

1
g = ; == % (rz +T; + Am) (6.5.19)

To a surprising degree, laser action of the usual kind depends very strongly on this
inequality. We will require (6.5.19) in the next chapter.

The effects of collisional dephasing relaxation can be illustrated in detail by
integrating the coupled equations for the p’s (see Problem 6.11). In Figure 6.6 we
show the solutions for a wide range of parameters. We have chosen a special case
that is free of complications. We take T'; = I', = 0 (no transfer of probability to
levels other than 1 and 2}, and we take A = 0 (exact resonance). Since I'y = Ty
= 0, we have dp,/dt + dps/dt = 0. Thus, p;; + pp = 1 (conservation of
probability), and it is enough to determine either p;, Or oy Actually it is most
convenient to deal with the inversion ps; — pyy, since it enters Egs. (6.5.17) nat-
urally. Furthermore, Egs. (6.5.17) show that at exact resonance p,, + pj2 is cou-
pled only to itself and plays no role in the dynamics, so we can pay attention solely
to the difference, py; — 021, Which in any event is the variable that couples directly
to p;, and p,,, as Eqgs. (6.5.14) make clear.

Thus we can focus on two real variables

i(Pzz - Plz)

il

v

(6.5.20a)

W = D — 21 (6.5.20b)

which obey the equations (at resonance, and in the absence of the I'y and I'; col-
lisions and for real x)
= — Bv+ xw (6.5.21a)

(6.5.21b)

I

W= —Ay (1 + w) — xv
- These equations can be obtained directly from (6.5.14} and (6.5.17) and the def-
initions in (6.5.20). They are discussed further in Chapter 8. Of course, following
6.5.18) and the absence of Ty and Ty, we have 8 = 1/7 + A4;,/2.

The solutions shown in Figure 6.6 are chosen to illustrate the infiuence of elastic




206 THE TIME-DEPENDENT SCHRODINGER EQUATION

1.0 T T T 1.0
Ay
/
Q0 co
X=10A
B=Ar2
- ] ) 1 -
I T S *9
At
(a
0ot X=10A o v |
2 =15A 8 -
~006| v .
-0z} W .
- - W -
012 3 x=10A
-Q18pk 1 k=308
I 1 1 ~0.4 1 L L
04 Q7 10 13 04 or 1.0 13
At At

(c) (d?

Figure 6.6 Numerical solutions of the », w equations (6.5.21) for a range of collisional
damping rates. Note scale changes.

collisions. As the elastic-collision rate 1 /7 increases from zero, the damping pa-
rameter 3 also increases and the oscillatory (so-called “‘coherent’”) response of the
atom to the applied radiation changes to nonoscillatory (“‘incoherent™) decay. Note

the changes in scale needed in the figure to make evident the different types of
response.

* The notation used for the p’s suggests that they are the elements of a 2 X 2 matrix:

ey R ‘
e= | . (6.5.22)
P21 P22

This is indeed the case, and quantum statistical mechanics is devoted to the study of such
matrices. They were introduced into quantum theory independently by L. D. Landau and
J. von Neumann before 1930. For historical reasons p is called the density matrix of the
system, and in this case p is the density matrix of a two-level atom.

The density matrix is a generalization of a related 2 X 2 matrix
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cef e cf (6.5.23)
ot o o

and the two are occasionally confused. Note that they are not the same matrix, despite the
original definitions in (6.5.1): gy, = ¢, c¥, p1; = ¢;¢f, ete, This is because the p's are now
understood to refer to collision averages of ¢,¢¥, etc. Thus the equations (6.5.14) and
(6.5.17) for the clements of the density matrix cannot be obtained from simpler equations
for ¢, and ¢, separately. [The reader is challenged to try to construct equations for ¢; and
¢, that can be used to obtain (6.5.14) and (6.5.17).] This is the most imporntant sense in
which the cc* combinations are more physical than ¢’s and ¢*'s alone.

The existence of the matrix (6.5.22) establishes a definite meaning to the terms ‘‘diag-
onal” and “‘off-diagonal’’. Obviously py; and ps, are the elements on the diagonal, and py,
and py, are the off-diagonal elements. This terminology is frequently applied to the damping
rates. Referring to Eqs. (6.5.14), we see that Iy and T'y + A,; can be called diagonal
damping rates, and from Egs. (6.5.17) we see that 8 is the off-diagonal damping rate. A
fundamental relation, obtained from (6.5.18), is illustrated by the inequality

B=4(T) + 1Ty + Ay) (6.5.24)

As we have seen, because the off-diagonal elements p; and p,; have a complex phase as

well as a magnitude, they are susceptible to purely phase-destructive, as well as population-
changing, relaxation. *

APPENDIX 6.A MATRIX ELEMENTS OF THE ELECTRON
COORDINATE r FOR LOW-LYING STATES OF HYDROGEN

The coordinate vector r can be written r = rt, where r = |r| is the magnitude of
r,and ¥ = % sin & cos ¢ + ¥ sin 0 sin ¢ + Z cos @ is the radial unit vector (recall

Figure 6.3). The matrix element of r between two states &, and $, is defined by
(6.3.8):

Iy = SH ®¥(r) rd,(r) d°r (6.A.1)

We separate the integral into its radial and angular parts, according to the corre-
sponding separation of the wave functions of Appendix 5.A. That is,

rlz = rlzi']z (6.A.2)

where 7, is the matrix clement of r, and £, is the matrix element of the radial
unit vector £. In terms of hydrogen wave functions we have




TABLE 6.1 Radial Coordinate Matrix
Elements for Atomic Hydrogen

Transition i/ ag ./ a
ls-2p 1.29 1.66
15-3p 0.517 0.267
1s-4p 0.305 0.093
25-3p 3.07 9.4
25—p 1.28 1.64
2p-3s 0.95 0.9
2p-3d 4.75 22.5
2p4d 1.71 2.92

TABLE 6.2 Cartesian Components of Angular Matrix Elements

Angular Matrix

Element x Cornponent ¥ Component z Compénent
............................................ 5—p TTansItions ......oiievueniiniieiiiinraiei e aieieiniraan
(00]#]10) 0 0 Ny
(00| #[11) - —ivT 0
(00[#]1 —1) A —iv 0
............................................ P—d Transitions ...oeeuueeiiceiicniciiici e,
{10]#|20) 0 0 z
(10]£121) —vE —iVi 0
(10]#|2 —-1) Vs —ivE 0
(10}#]22) 0 0 0
(10|#]2 —-2) 0 0 0
(11]#(20) AN —iE 0
(11]#]21) 0 0 VI%‘
(11}#f2 —1) 0 0 0
(11]#122) -z —iv 0
(11|#{2 ~2) 0 0 0
(1 —1y|#]20) -V —iNg 0
(1 =1y||21 0 0 0
(1-1)#2 -1 0 0 Vi
(F —1)|#]22) 0 0 0
(1 ~1)}#|2 -2) JI -l 0
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= S R (r) arz!z(r) r dr (6.A.3)

=
fe]
J

(6.A.4)

-
s}
I

SS Y?:ml(ey ¢) f'lemz(as (b) sin 8 df dqb

The radial part depends only on principal quantum numbers and orbital angular
momenta {7, [), and we find the values in Table 6.1. For the vector part of ry, we
use the notation

Fiz = (llm1|f'l[2ma) (6.A.5)
and we give the Cartesian components of the matrix element separately in Table
6.2.

PROBLEMS

6.1 Show that the factorization (5.3.4) does not work when H is time-depen-
dent. That is, show that the resulting equation for ®(r) depends on ¢, and
so ®(r) itself must depend on z, contrary to the factorization assuraption.

6.2  From the definition of r,; in (6.3.8), show that (r;»)}* = r;,.

6.3 Every solution $(r) of the Schrodinger equation (5.4.1) remains a solution
when multiplied by a constant X, and it remains normalized according to
(5.4.6) if X is a pure phasor: K = ¢*. In this sense every #(r) has arbitrary
complex phase that can be adjusted for convenience. Assurne that an injtial
phase choice for the wave functions &, and ®, (perhaps from a table such
as given in Appendix 5.A) leads to the complex matrix element Vi, = o —
i3 (where o and 8 are real).

(a) Replace &, by K $,. Find the value of X that makes V7, real.

(b) What is the new purely real value of ¥ 57

6.4 (a) Find the second-order differential equations satisfied by the probability

amplitudes ¢, and ¢, by differentiation and substitution between Egs.
(6.3.14).

(b) Write the general solution for ¢,(¢) in tetms of sin(Qr/2) and
cos(9t/2), and fix the coefficients to fit the initial condition £,(0) =
0, c(0) = 1.

{c) The initial condition specified in (b) is opposite to the one used to obtain
the solutions (6.3.16) in the text. Comment on the differences (if any)
between (6.3.16) and the solutions obtained in (b).

6.5 Use the definition of ry; in (6.3.8) to show that ry, = 0. To obtain this
result you must assume that | ®,(r)|® is an even function of r. More pre-
cisely, ®,(r) must have a definite parity, 1.e., ®,{—r) is identically the
same as either &, (r) (even parity) or —&,(r) (odd parity).






